
COP 4610: Introduction to Operating Systems (Fall 2016)

Chapter 1: Introduction

Zhi Wang

Florida State University

Content

• Computer systems

• Operating system operations

• process management

• memory management

• storage management

• protection and security

Four Components of a Computer System

• Computer system has four components:

• hardware provides basic computing resources

• e.g., CPU, memory, I/O devices

• operating system controls and coordinates use of hardware among users

• application programs use system resources to solve computing problems

• e.g., word processors, compilers, web browsers….

• users

• e.g., people, machines, other computers

Four Components of a Computer System

Hardware Components

• CPUs & device controllers connect through buses to share memory

• Concurrent execution of CPUs & devices compete for memory cycles

Devices

• Each device controller is in charge of a particular device type

• disk controller, USB controller…

• Each device controller has a local buffer

• I/O: between the device and local buffer of the controller

• CPU moves data between main memory and controller buffers

• I/O devices and the CPU can execute concurrently

• DMA (direct memory access)

• device controller informs CPU that it has finished its operation by causing an interrupt

Interrupts and Traps
• Interrupt transfers control to the interrupt service routine

• interrupt vector: a table containing addresses of all the service routines

• incoming interrupts are disabled while serving another interrupt to prevent a lost interrupt

• interrupt handler must save the (interrupted) execution states

• A trap is a software-generated interrupt, caused either by an error or a user request

• an interrupt is asynchronous; a trap is synchronous

• e.g., system call, divided-by-zero exception, general protection exception…

• Operating systems are usually interrupt-driven

Interrupt Handling

• Operating system preserves the execution state of the CPU

• save registers and the program counter (PC)

• OS determines which device caused the interrupt

• polling

• vectored interrupt system

• OS handles the interrupt by calling the device’s driver

• OS restores the CPU execution to the saved state

Interrupt Timeline

I/O: from System Call to Devices, and Back

• A program uses a system call to access system resources

• e.g., files, network

• Operating system converts it to device access and issues I/O requests

• I/O requests are sent to the device driver, then to the controller

• e.g., read disk blocks, send/receive packets…

• OS puts the program to wait (synchronous I/O) or returns to it without waiting
(asynchronous I/O)

• OS may switches to another program when the requester is waiting

• I/O completes and the controller interrupts the OS

• OS processes the I/O, and then wakes up the program (synchronous I/O) or send its a
signal (asynchronous I/O)

Direct Memory Access

• DMA is used for high-speed I/O devices able to transmit information at close to
memory speeds

• e.g., Ethernet, hard disk, cd rom…

• Device driver sends an I/O descriptor the controller

• I/O descriptor: operation type (e.g., send/receive), memory address…

• The controller transfers blocks of data between its local buffer and main memory
without CPU intervention

• only one interrupt is generated when whole I/O request completes

Put it Together

Storage Structure

• Main memory: the only large storage that CPU can directly access

• random access, and typically volatile

• Secondary storage: large nonvolatile storage capacity

• Magnetic disks are most common second-storage devices

• rigid metal or glass platters covered with magnetic recording material

• disk surface is logically divided into tracks and sectors

• disk controller determines the interaction between OS and the device

Storage Hierarchy

• Storage systems can be organized in hierarchy

• speed

• cost

• volatility

• Caching: copying information into faster storage system

• main memory can be viewed as a cache for secondary storage

Storage Hierarchy

Performance of Storages

Caching

• Caching is an important principle, performed at many levels

• e.g., in hardware, operating system, user program…

• Caching: data in use copied from slower to faster storage temporarily

• faster storage (cache) is checked first to determine if data is there

• if it is, data is used directly from the cache (fast)

• if not, data is first copied to cache and used there

• Cache is usually smaller than storage being cached

• Cache management is an important design problem

• e.g., cache size and replacement policy

Multiprocessor Systems

• Most old systems have one single general-purpose processor

• e.g., smartphone, PC, server, mainframe

• most systems also have special-purpose processors as well

• Multiprocessor systems have grown in use and importance

• also known as parallel systems, tightly-coupled systems

• advantages: increased throughput, economy of scale, increased reliability --
graceful degradation or fault tolerance

• two types: asymmetric multiprocessing and symmetric multiprocessing

Symmetric Multiprocessing Architecture

A Dual-Core Design

Clustered Systems

• Multiple systems work together through high-speed network

• usually sharing storage via a storage-area network (SAN)

• Clusters provide a high-availability service that can survive failures

• asymmetric clustering has one machine in hot-standby mode

• symmetric clustering has multiple nodes running applications, monitoring each other

• Some clusters are designed for high-performance computing (HPC)

• applications must be written to use parallelization

Clustered Systems

Distributed Systems

• A collection of separate, possibly heterogeneous, systems inter-connected
through networks

• Network OS allows systems to exchange messages

• A distributed system creates the illusion of a single system

Special-Purpose Systems

• Real-time embedded systems most prevalent form of computers

• vary considerably

• use special purpose (limited purpose) real-time OS

• Multimedia systems

• streams of data must be delivered according to time restrictions

• Handheld systems

• e.g., PDAs, smart phones

• limited CPU, memory, and power

• used to use reduced feature OS

Client-Server Computing

• Dumb terminals were supplanted by smart PCs

• Servers responds to requests generated by clients

• database server provides an interface for client to access database

• file server provides an interface for clients to store and retrieve files

Peer-to-Peer Computing

• Another model of distributed system

• P2P does not distinguish clients and servers

• instead all nodes are considered peers

• may each act as client, server or both

• A node must join P2P network

• registers its service with central lookup service, or

• broadcast request for and respond to service via a discovery protocol

• Examples include BitTorrent, Napster and Gnutella

Web-Based Computing

• Web has become ubiquitous

• more devices become connected to allow web access: PCs, smartphone,
tablets, refrigerator…

• Web server farms become highly sophisticated

• power is most expensive for big data centers

What Operating Systems Do

• Users want convenience, ease of use

• don’t care much about resource utilization

• Shared computers (e.g., mainframe) must keep all users happy

• users of dedicate systems frequently use shared resources from servers

• e.g., gmail, google doc…

• Handhold devices are resource constrained, optimized for usability and battery life

• e.g., smartphones, tablets

• Some computers have little or no user interface

• e.g., embedded computers in devices and automobiles

What Operating Systems Do

• OS is a resource allocator

• it manages all resources

• it decides between conflicting requests for efficient and fair resource sharing

• OS is a control program

• it controls program execution to prevent errors and improper use of system

Operating System Definition

• A good approximation is “everything a vendor ships when you order an
operating system”

• no universally accepted definition

• what the vendor ships can vary wildly

• Kernel is “the one program running at all times on the computer”

• what about demon programs that starts with the kernel such as init?

• Everything else is either a system program or an application program

• system programs are shipped with the OS

Operating System Structure

• Multiprogramming is necessary for efficiency

• single user cannot keep CPU and I/O devices busy at all times

• user’s computing tasks are organized as jobs (code and data)

• kernel schedules jobs (job scheduling) so CPU always has things to do

• a subset of total jobs in system is kept in memory

• when a job has to wait (e.g., for I/O), kernel switches to another job

• Timesharing (multitasking) extends the multiprogramming

• OS switches jobs so frequently that users can interact with each running job

• response time should be < 1s

• each user has at least one program executing in memory (process)

• if several jobs ready to run at the same time (CPU scheduling)

Memory Layout for Multiprogrammed System

Dual-mode operation

• Operating system is usually interrupt-driven

• Dual-mode operation allows OS to protect itself and other system components

• user mode and kernel mode

• a mode bit distinguishes when CPU is running user code or kernel code

• some instructions designated as privileged, only executable in kernel

• system call changes mode to kernel, return from call resets it to user

Transition between Modes

• System calls, exceptions, interrupts cause transitions between kernel/user modes

• Timer used to prevent infinite loop or process hogging resources

• to enable a timer, set the hardware to interrupt after some period

• OS sets up a timer before scheduling process to regain control

• the timer for scheduling is usually periodical (e.g., 250HZ)

• tickless kernel: on-demand timer interrupts

Process Management

• A process is a program in execution

• program is a passive entity, process is an active entity

• a system has many processes running concurrently

• Process needs resources to accomplish its task

• OS reclaims all reusable resources upon process termination

• e.g., CPU, memory, I/O, files, initialization data

• Single-threaded process has one program counter

• program counter specifies location of next instruction to execute

• processor executes instructions sequentially, one at a time, until completion

• Multi-threaded process has one program counter per thread

Process Management Activities

• Process creation and termination

• Processes suspension and resumption

• Process synchronization primitives

• Process communication primitives

• Deadlock handling

Memory Management

• Memory is the main storage directly accessible to CPU

• data needs to be kept in memory before and after processing

• all instructions should be in memory in order to execute

• Memory management determines what is in memory to optimize CPU
utilization and response time

• Memory management activities:

• keeping track of which parts of memory are being used and by whom

• deciding which processes and data to move into and out of memory

• allocating and deallocating memory space as needed

Storage Management (File Systems)

• OS provides a uniform, logical view of data storage

• file is a logical storage unit that abstracts physical properties

• files are usually organized into directories

• access control determines who can access the file

• File system management activities:

• creating and deleting files and directories

• primitives to manipulate files and directories

• mapping files onto secondary storage

• backup files onto stable (non-volatile) storage media

Mass-Storage Management

• Disk subsystem manages mass storages

• disks are used to store:

• data that does not fit in main memory

• data that must be kept for a “long” period of time

• entire speed of the system hinges on disk subsystem and its algorithms

• some storage needs not be fast (e.g., optical storage or magnetic tape)

• Mass-storage management activities:

• free-space management

• storage allocation

• disk scheduling

Migration of Data Through Storage Layers

• System must use most recent value, no matter where it is stored

• Many levels of data coherency

• cache coherency for multiprocessors (cache snooping)

• all CPUs have the most recent value in their cache

• synchronization for multi-processes or multiple threads

• distributed environment situation even more complex

• several copies of a datum can exist

I/O Subsystem

• I/O subsystem hides peculiarities of hardware devices from the user

• I/O subsystem is responsible for:

• manage I/O memory

• buffering: to store data temporarily while it is being transferred

• caching: to store parts of data in faster storage for performance

• spooling: the overlapping of output of one job with input of other jobs

• define the general device-driver interfaces

• object-oriented design pattern

• manage device drivers for specific hardware devices

Protection and Security

• Protection: mechanism for controlling access to resources

• User access control determines who it is and who can do what

• each user has a user id including the name and an associated number

• files and processes are associated with a user ID to determine access right

• group id allows set of users to be defined and managed

• privilege escalation is an attack that allows user to change to effective ID
with more rights

• Security: defense of the system against internal and external attacks (policy)

• e.g., denial-of-service, worms, viruses, identity theft, theft of service

Open-Source Operating Systems

• Operating systems made available in source-code format

• rather than just binary (closed source)

• counter to the copy protection and Digital Rights Management (DRM) movement

• started by Free Software Foundation (FSF), which has “copyleft” GNU Public
License (GPL)

• Examples include GNU/Linux, BSDs, MINUX…

End of Chapter 1

